Force and Displacement Angle Visualization
Example
Question:
Find the angle between force
\(\vec{F} = (3\hat{\imath} + 4\hat{\jmath} - 5\hat{k})\) unit and displacement
\(\vec{d} = (5\hat{\imath} + 4\hat{\jmath} + 3\hat{k})\) unit.
Also find the projection of \(\vec{F}\) on \(\vec{d}\).
Solution:
\[
\vec{F} \cdot \vec{d} = F_x d_x + F_y d_y + F_z d_z = 3 \times 5 + 4 \times 4 + (-5) \times 3 = 16~\text{unit}
\]
\[
\vec{F} \cdot \vec{d} = F d \cos\theta = 16~\text{unit}
\]
Now,
\[
\vec{F} \cdot \vec{F} = F^2 = F_x^2 + F_y^2 + F_z^2 = 9 + 16 + 25 = 50~\text{unit}
\]
\[
\vec{d} \cdot \vec{d} = d^2 = d_x^2 + d_y^2 + d_z^2 = 25 + 16 + 9 = 50~\text{unit}
\]
\[
\cos\theta = \frac{16}{\sqrt{50 \times 50}} = \frac{16}{50} = 0.32
\]
\[
\theta = \cos^{-1}(0.32)
\]
The projection of \(\vec{F}\) on \(\vec{d}\) is
\[
|\vec{F}| \cos\theta = 7.07 \times 0.32 = 2.26~\text{unit} \quad (\text{where } |\vec{F}| = \sqrt{50} \approx 7.07)
\]
Vector Information
Force (F): 3î + 4ĵ - 5k̂ units
Displacement (d): 5î + 4ĵ + 3k̂ units
Dot Product (F·d): 16 units
Angle (θ) between vectors: cos⁻¹(0.32) ≈ 71.34°
Projection of F on d: F·d / |d| ≈ 16 / √50 ≈ 2.26 units



