Terminal Velocity and Viscosity Simulation
Example
Question:
The terminal velocity of a copper ball of radius 2.0 mm falling through a tank of oil at 20°C is \(6.5\,\mathrm{cm\,s^{-1}}\). Compute the viscosity of the oil at 20°C. Density of oil is \(1.5 \times 10^3\,\mathrm{kg\,m^{-3}}\), density of copper is \(8.9 \times 10^3\,\mathrm{kg\,m^{-3}}\).
Solution:
We have
\[
v_t = 6.5 \times 10^{-2}\,\mathrm{m\,s^{-1}},\quad a = 2 \times 10^{-3}\,\mathrm{m},\quad g = 9.8\,\mathrm{m\,s^{-2}},
\]
\[
\rho = 8.9 \times 10^3\,\mathrm{kg\,m^{-3}},\quad \sigma = 1.5 \times 10^3\,\mathrm{kg\,m^{-3}}
\]
From Eq. (9.18):
\[
\eta = \frac{2}{9} \frac{a^2 g (\rho - \sigma)}{v_t}
\]
\[
= \frac{2}{9} \frac{(2 \times 10^{-3})^2 \times 9.8 \times 7.4 \times 10^3}{6.5 \times 10^{-2}}
\]
\[
= 9.9 \times 10^{-1}\,\mathrm{kg\,m^{-1}\,s^{-1}}
\]
Viscosity Calculation
Using Stokes' Law: η = (2/9) * (r²g(ρ - σ)) / vt
Calculated Viscosity: 0.99 kg m-1s-1



