3D Solenoid with Visible Internal Field
Interactive 3D Solenoid Simulation
Simulation of a solenoid with a magnetic core (μr = 400) carrying current I = 2A with n = 1000 turns/meter.
Example
Question:
A solenoid has a core of material with relative permeability 400. The windings are insulated from the core and carry a current of 2A. If the number of turns is 1000 per metre, calculate (a) \(H\), (b) \(M\), (c) \(B\) and (d) the magnetising current \(I_m\).
Solution:
(a) Field \(H\):
\[
H = nI = 1000 \times 2.0 = 2 \times 10^3\,\text{A/m}
\]
(b) Magnetic field \(B\):
\[
B = \mu_r \mu_0 H = 400 \times 4\pi \times 10^{-7} \times 2 \times 10^3 = 1.0\,\text{T}
\]
(c) Magnetisation \(M\):
\[
M = \frac{B - \mu_0 H}{\mu_0} = (\mu_r - 1) H = 399 \times H \approx 8 \times 10^5\,\text{A/m}
\]
(d) Magnetising current \(I_m\) (additional current for same \(B\) in absence of core):
\[
B = \mu_r n (I + I_m)
\]
Using \(I = 2\,\text{A}\), \(B = 1\,\text{T}\):
\[
I_m = 794\,\text{A}
\]
Example Values
- Current (I): 2 A
- Turns per meter (n): 1000
- Relative permeability (μr): 400
- Magnetic field intensity (H): 2 × 10³ A/m
- Magnetic flux density (B): 1.0 T
- Magnetization (M): 8 × 10⁵ A/m
- Magnetizing current (Im): 794 A
Magnetic Field Intensity (H)
Formula: H = nI
Calculation: 1000 × 2
Result: 2 × 10³ A/m
Magnetic Flux Density (B)
Formula: B = μrμ0H
Calculation: 400 × 4π×10⁻⁷ × 2×10³
Result: 1.0 T
Magnetization (M)
Formula: M = (μr-1)H
Calculation: 399 × 2×10³
Result: 8 × 10⁵ A/m
Magnetizing Current (Im)
Formula: Im = (μr-1)I
Calculation: 399 × 2
Result: 794 A



