Simple Harmonic Motion Simulator
x = 5 cos[2π t + π/4]
Example
Question:
A body oscillates with SHM according to the equation \( x = 5 \cos\left[ 2\pi t + \pi/4 \right] \) (in SI units). At \( t = 1.5\,\text{s} \), calculate the (a) displacement, (b) speed and (c) acceleration of the body.
Solution:
The angular frequency \( \omega = 2\pi~\text{s}^{-1} \) and period \( T = 1~\text{s} \).
At \( t = 1.5~\text{s} \):
(a) Displacement:
\[
x = 5 \cos[2\pi \times 1.5 + \pi/4] = 5 \cos(3\pi + \pi/4)
= 5 \times (-0.707) = -3.535~\text{m}
\]
(b) Speed:
\[
v = -A\omega \sin(\omega t + \phi)
= -5 \times 2\pi \sin(3\pi + \pi/4)
= -10\pi \times 0.707
\approx 22~\text{m/s}
\]
(c) Acceleration:
\[
a = -\omega^2 x
= -(2\pi)^2 \times (-3.535)
= 4\pi^2 \times 3.535
\approx 140~\text{m/s}^2
\]



