Heat Conversion: Ice to Steam
Visualize the energy required to convert ice at -12°C to steam at 100°C
Example
Question:
Calculate the heat required to convert 3 kg of ice at \(-12^\circ\mathrm{C}\) kept in a calorimeter to steam at \(100^\circ\mathrm{C}\) at atmospheric pressure.
Given:
Specific heat capacity of ice = \(2100\,\mathrm{J\,kg^{-1}\,K^{-1}}\)
Specific heat capacity of water = \(4186\,\mathrm{J\,kg^{-1}\,K^{-1}}\)
Latent heat of fusion of ice = \(3.35 \times 10^5\,\mathrm{J\,kg^{-1}}\)
Latent heat of steam = \(2.256 \times 10^6\,\mathrm{J\,kg^{-1}}\)
Solution:
Mass of ice, \(m = 3\,\mathrm{kg}\)
1. Heat required to convert ice at \(-12^\circ\mathrm{C}\) to ice at \(0^\circ\mathrm{C}\):
\[
Q_1 = m s_\mathrm{ice} \Delta T_1 = 3 \times 2100 \times [0 - (-12)] = 75600\,\mathrm{J}
\]
2. Heat required to melt ice at \(0^\circ\mathrm{C}\) to water:
\[
Q_2 = m L_\mathrm{ice} = 3 \times 3.35 \times 10^5 = 1005000\,\mathrm{J}
\]
3. Heat required to convert water at \(0^\circ\mathrm{C}\) to water at \(100^\circ\mathrm{C}\):
\[
Q_3 = m s_\mathrm{water} \Delta T_2 = 3 \times 4186 \times (100 - 0) = 1255800\,\mathrm{J}
\]
4. Heat required to convert water at \(100^\circ\mathrm{C}\) to steam at \(100^\circ\mathrm{C}\):
\[
Q_4 = m L_\mathrm{steam} = 3 \times 2.256 \times 10^6 = 6768000\,\mathrm{J}
\]
Total heat required:
\[
Q = Q_1 + Q_2 + Q_3 + Q_4 = 75600 + 1005000 + 1255800 + 6768000 = 9.1 \times 10^6\,\mathrm{J}
\]
Current Phase Transition
Ice warming from -12°C to 0°C
Energy added: 0 J
Temperature: -12°C



